

Mark Scheme (Results)

October 2024

Pearson Edexcel International Advanced Subsidiary Level In Physics (WPH12) Paper 01 Waves and Electricity

Question Number	Answer	Mark
1	B is the correct answer	1
	A is not correct because intensity is power per unit area C is not correct because intensity should be power per unit area on a surface D is not correct because intensity should be power per unit area on a surface	
2	D is the correct answer	1
	A is not correct because the electrons need to move to lower energy levels and emit photons. B is not correct because the electrons need to move to lower energy levels. C is not correct because the electrons need to emit photons.	
3	A is the correct answer	1
	B is not correct because the distance should be doubled. C is not correct because the time should be halved. D is not correct because the time should be halved and the expression is inverted.	
4	B is the correct answer	1
	A is not correct because the $0.7s$ is not the time period of the wave C is not correct because the $0.4s$ is not the time period of the wave D is not correct because $0.4 \text{ s} - 0.1 \text{ s}$ is only half the time period of the wave	
5	D is the correct answer	1
	A is not correct because both the resistance and lattice vibrations should increase. B is not correct because the resistance should increase. C is not correct because the lattice vibrations should increase.	
6	D is the correct answer	1
	A is not correct because the current should increase and the potential difference should increase. B is not correct because the current should increase. C is not correct because the potential difference should increase.	
7	B is the correct answer	1
	A is not correct because the de Broglie wavelength would be 4λ . C is not correct because the de Broglie wavelength would be 0.5λ . D is not correct because the de Broglie wavelength would be 0.125λ .	
8	C is the correct answer	1
	A is not correct because the resistance of the 7 Ω and 18 Ω resistors in parallel is not correct. B is not correct because the resistance of the 7 Ω and 18 Ω resistors in parallel is not correct and there is a short circuit around the 4 Ω resistor. D is not correct because there is a short circuit around the 4 Ω resistor.	

9	C is the correct answer	1
	A is not correct because this would describe the motion if it was a stationary wave. B is not correct because in a complete time period F and G would then reverse direction again. D is not correct because the wave is travelling to the right, not to the left.	
10	C is the correct answer	1
	A is not correct because this gives the current. B is not correct because this gives the potential difference across the 20 Ω resistor. D is not correct because this gives 1/power.	

Question Number	Answer	Mark
11	Electrons can behave as waves (1)	
	Because the rings show diffraction / interference (1)	2
	Total for question 11	2

Question Number	Answer		Mark
12	The current in each wire is the same	1)	
	The (cross-sectional) area of each wire is the same	1)	
	Because $I = nqvA$ the (average) velocity of electrons (in the copper wires) is less (than that in the nichrome wire)	1)	3
	Total for question 12		3

Question Number	Answer		Mark
13(a)	Oscillations / vibrations are perpendicular to the <u>direction</u> of energy transfer of the wave	(1)	1
	Or Oscillations / vibrations are perpendicular to the <u>direction</u> of wave travel / propagation		
13(b)	The paths are different lengths / distances	(1)	
	Or There is a path difference		
	If the path difference is a whole number of wavelengths Or path difference = $n\lambda$ where n is an integer	(1)	
	Waves are in phase (so constructive interference occurs) Or there is a phase difference of 0 (so constructive interference occurs) Or there is a phase difference of $2\pi n$ where n is an integer	(1)	3
	Total for question 13		4

Question Number	Answer		Mark
14(a)	LED, power supply and ammeter, in series (allow diode for LED)	(1)	
	Method to vary the potential difference across the LED	(1)	
	LED connected in forward bias and voltmeter connected in parallel with LED	(1)	3
	Example circuit A		
14(b)	Current = 37 (mA) read from graph (allow range 36 to 38 mA)	(1)	
	Use of $P = VI$	(1)	
	Power of LED = 0.0814 W (allow range 0.079 to 0.084 W)	(1)	3
	Example calculation $P = 2.2 \text{ V} \times 37 \times 10^{-3} \text{ A} = 0.0814 \text{ W}$		
14(c)	Between 0 V and 1.6 V the resistance of the LED was (almost) infinite	(1)	
	(As p.d. increased) above 1.6 V, the resistance of the LED decreased	(1)	2
	Max 1 mark for statement that resistance is initially (almost) infinite and then decreases		
	Total for question 14		8

Question Number	Answer		Mark
15(a)	Use of cross-sectional area = width × thickness	(1)	
	Use of factor of 6 to determine total length of metal strips Or Use a factor of 6 to determine the resistance of one strip	(1)	
	Use of $R = \frac{\rho l}{A}$	(1)	
	$\rho = 4.8 \times 10^{-7} \Omega \mathrm{m}$	(1)	4
	Example calculation $A = 1.40 \times 10^{-3} \text{ m} \times 0.23 \times 10^{-3} \text{ m} = 3.22 \times 10^{-7} \text{ m}^2$		
	$l_{\text{total}} = 6 \times 18 \times 10^{-3} \text{m} = 0.108 \text{m}$		
	$\rho = \frac{0.16 \Omega \times 3.22 \times 10^{-7} \mathrm{m}^2}{0.108 \mathrm{m}} = 4.77 \times 10^{-7} \Omega \mathrm{m}$		
15(b)	The cross-sectional area of each metal strip is $\frac{\text{volume}}{l}$	(1)	
	So the resistance of each strip is $\frac{\rho l^2}{\text{volume}}$	(1)	
	So resistance is proportional to l^2 (which gives a straight line through the origin)	(1)	3
	Total for question 15		7

Question Number	Answer		Mark
16(a)	Direct the laser away from people's eyes Stand behind the laser Avoid directing the laser at reflective surfaces	(1)	1
16(b)	The distance from the central maximum to any other maximum or the distance between two maxima of the same order	(1)	
	The (perpendicular) distance between the diffraction grating and the screen	(1)	2
16(c)(i)	$\theta = 9^{\circ}$	(1)	
	Calculates d	(1)	
	Use of $n\lambda = d \sin \theta$	(1)	
	$\lambda = 630 \text{ (nm)}$	(1)	4
	$\frac{\text{Example calculation}}{\theta = \frac{18^{\circ}}{2} = 9^{\circ}}$		
	$d = \frac{10^{-3} \text{ m}}{250} = 4 \times 10^{-6} \text{ m}$		
	$\lambda = 4 \times 10^{-6} \text{ m} \times \sin(9^{\circ}) = 626 \text{ nm}$		
16(c)(ii)	Use of $n\lambda = d \sin \theta$ with $\theta = 90^{\circ}$	(1)	
	$n_{\text{max}} = 6$ (ecf from (c)(i))	(1)	2
	Example calculation $n_{\text{max}} = \frac{4 \times 10^{-6}}{630 \times 10^{-9}} = 6.3$		
	Total for question 16		9

Number	Answer					Mark	
17(a)	Use of $n = \frac{c}{v}$					(1)	
	$v = 2.26 \times 1$					(1)	2
	Example calculation $v = \frac{3.00 \times 10^8 \text{ m s}^{-1}}{1.33} = 2.256 \times 10^8 \text{ m s}^{-1}$						
	$v = \frac{0.00 \times 1}{1}$	$\frac{1}{.33} = 3$	$2.256 \times 10^8 \text{ m s}$	5 ⁻¹			
*17(b)	answer with lin	nkages and full r how the answ	ly-sustained reasor ver is structured an	ning. Ma d shows	erent and logically structured arks are awarded for indicative lines of reasoning. The ad for indicative content.	e	
	IC points	IC mark	Max linkage n	nark	Max final mark		
	6	4	2		6		
	5	3	2		5		
	4	3	1		4		
	3	2	1		3		
	2	2	0		2		
	1	1	0		1		
	0	0	0		0		
	of reasoning.			Numb	varded for structure and lines oer of marks awarded for ure of answer and sustained f reasoning		
	structure with	vs a coherent and halinkages and soning demonstrates			2		
	Answer is partially structured with some 1 linkages and lines of reasoning						
	Answer has no linkages between points and is unstructured 0						
		peed of light is	s less in water (tl	,			
	air		ndex of water is good optically) dense		than the refractive index of		
					s incident on the person's		
	IC3 The ar	ngle (of incide tical angle	ence) of ray B at	the wa	ter surface is greater than		
	IC4 So ray B is totally internally reflected (and is incident on the person's eyes)						
	critica	l angle			ter surface is less than the		
			n ray C is transm person's eyes)	itted / 1	refracted (into the air so is		6
	Total for qu	estion 17					8

Question Number	Answer		
18(a)	Oscillations / waves <u>reflect</u> from (each) end of the cable	(1)	
	The (reflected) waves interfere / superpose	(1)	
	A node forms where there is destructive interference		
	Or An antinode forms where there is constructive interference	(1)	3
18(b)	Point X has a large / maximum amplitude	(1)	
	At point X the displacement varies (between maximum displacement and zero displacement)	(1)	
	At point Y the cable always has zero displacement Or At point Y the cable is stationary	(1)	3

18(c)(i)	Calculates mass per unit length	(1)	
	$\mu = 24.1 \text{ (kg m}^{-1}\text{)}$	(1)	2
	Example calculation		
	$\mu = \frac{2.10 \times 10^3 \text{ kg}}{87.0 \text{ m}}$		
	$\mu = 24.14 \text{ kg m}^{-1}$		
18(c)(ii)	Use of $W = mg$	(1)	
	Use of $T = \frac{W}{\text{number of cables}}$	(1)	
	Use of $v = \sqrt{\frac{T}{\mu}}$	(1)	
	Use of $v = f\lambda$ with $\lambda = 320$ m or $\lambda = 7$ m Or Use of $v = f\lambda$ with $f = 280$ Hz	(1)	
	Lowest possible frequency produced by standing wave on longest cable = 1.1 Hz		
	Or Lowest possible frequency produced by standing wave on shortest cable = 48 Hz		
	Or Length of cable needed to give lowest frequency of 280 Hz = 0.60 m	(1)	
	Lowest frequency waves produced < 280 Hz so humming is not produced by standing waves on the suspending cables Or length of cable is not within range 3.5 to 160 m so humming is not produced by standing waves on the suspending cables	(1)	6
	Example calculation $W = 140 \times 10^6 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.37 \times 10^9 \text{ N}$		
	$T = \frac{1.37 \times 10^9 \text{N}}{500} = 2.74 \times 10^6 \text{ N}$		
	$v = \sqrt{\frac{2.74 \times 10^6 \mathrm{N}}{24 \mathrm{kg} \mathrm{m}^{-1}}} = 338 \mathrm{m} \mathrm{s}^{-1}$		
	$f = \frac{338 \text{ m s}^{-1}}{320} = 1.06 \text{ Hz or } f = \frac{338 \text{ m s}^{-1}}{7} = 48.3 \text{ Hz}$		
	Lowest frequency waves produced < 280 Hz so humming is not produced by standing waves on the suspending cables		
	Total for question 18		14

Question Number	Answer		Mark
19(a)	A <u>photon</u> (incident on a surface) is <u>absorbed</u> by an atom / electron Or A <u>photon</u> (incident on a surface) collides with an atom / electron	(1)	
	An electron gains energy and is emitted (from the surface)	(1)	2
19(b)	(To cause the photoelectric effect) the energy (of a photon) must be greater than the work function (of the photocathode) Or (to cause the photoelectric effect) the frequency (of a photon) must be greater than the threshold frequency (of the photocathode)	(1)	
	Photon energy is proportional to frequency, so photons below a certain frequency / energy cannot cause the photoelectric effect	(1)	2
19(c)	Use of 1 eV = 1.6×10^{-19} J	(1)	
	Use of $E = hf$	(1)	
	Use of $v = f\lambda$	(1)	
	Comparison of 840 nm with 700 nm and conclusion all wavelengths of visible light can be detected Or Comparison of 2.85×10^{-19} J with 2.37×10^{-19} J and conclusion all wavelengths of visible light can be detected Or Comparison of 1.78 eV with 1.48 eV and conclusion all wavelengths of visible light can be detected Or Comparison of 3.57×10^{14} Hz with 4.29×10^{14} Hz	(1)	4
	Example calculation $E = 1.48 \text{ eV} \times 1.6 \times 10^{-19} \text{ J eV}^{-1} = 2.37 \times 10^{-19} \text{ J}$		
	$f_{\text{threshold}} = \frac{2.37 \times 10^{-19} \text{J}}{6.63 \times 10^{-34} \text{Js}} = 3.57 \times 10^{14} \text{Hz}$		
	$\lambda_{\text{threshold}} = \frac{3 \times 10^8 \text{ m s}^{-1}}{3.57 \times 10^{14} \text{ Hz}} = 840 \times 10^{-9} \text{ m}$		
	700 nm < 840 nm so all wavelengths of visible light can be detected		

19(d)	Use of $E_k = \frac{1}{2} mv^2$	(1)	
	Use of $V = \frac{w}{Q}$	(1)	
	Final kinetic energy = 1.81×10^{-17} (J)	(1)	3
	Example calculation Initial $E_k = 0.5 \times 9.11 \times 10^{-31} \text{ kg} \times (1.35 \times 10^6 \text{ m s}^{-1})^2 = 8.30 \times 10^{-19} \text{ J}$		
	$W = 108 \text{ V} \times 1.6 \times 10^{-19} \text{ C} = 1.73 \times 10^{-17} \text{ J}$		
	Final kinetic energy (= $1.73 \times 10^{-17} \text{ J} + 8.30 \times 10^{-19} \text{ J}$) = $1.81 \times 10^{-17} \text{ J}$		
19(e)	EITHER Use of $V = IR$ to calculate current in circuit	(1)	
	Calculates total p.d across resistors A to D	(1)	
	Use of sum of e.m.f. = sum of p.d	(1)	
	Internal resistance = $1.20 \text{ M}\Omega$	(1)	
	OR		
	Calculates total p.d. across resistors A to D	(1)	
	Uses ratio of resistance = ratio of p.d.	(1)	
	Correct values substituted into ratio equation	(1)	
	Internal resistance = $1.20 \text{ M}\Omega$	(1)	4
	Example calculation $I = \frac{108 \text{ V}}{85 \times 10^3 \Omega} = 1.27 \times 10^{-3} \text{ A}$	(1)	7
	$V = 1960 - 4 \times 108 = 1530 \mathrm{V}$		
	$r = \frac{1530 \text{ V}}{1.27 \times 10^{-3} \text{A}} = 1.20 \times 10^6 \Omega$		
	Total for question 19		15